Os elétrons estão distribuídos em camadas ao redor do núcleo. Admite-se a existência de 7 camadas eletrônicas, designados pelas letras maiúsculas:
K,L,M,N,O,P e Q. À medida que as camadas se afastam do núcleo, aumenta a energia dos elétrons nelas localizados.
As camadas da eletrosfera representam os níveis de energia da eletrosfera. Assim, as camadas K,L,M,N,O, P e Q constituem os 1º, 2º, 3º, 4º, 5º, 6º e 7º níveis de energia, respectivamente.
Por meio de métodos experimentais, os químicos concluíram que o número máximo de elétrons que cabe em cada camada ou nível de energia é:
K,L,M,N,O,P e Q. À medida que as camadas se afastam do núcleo, aumenta a energia dos elétrons nelas localizados.
As camadas da eletrosfera representam os níveis de energia da eletrosfera. Assim, as camadas K,L,M,N,O, P e Q constituem os 1º, 2º, 3º, 4º, 5º, 6º e 7º níveis de energia, respectivamente.
Por meio de métodos experimentais, os químicos concluíram que o número máximo de elétrons que cabe em cada camada ou nível de energia é:
Nível de energia | Camada | Número máximo de elétrons |
1º | K | 2 |
2º | L | 8 |
3º | M | 18 |
4º | N | 32 |
5º | O | 32 |
6º | P | 18 |
7º | Q | 2 (alguns autores admitem até 8) |
Em cada camada ou nível de energia, os elétrons se distribuem em subcamadas ou subníveis de energia, representados pelas letras s,p,d,f, em ordem crescente de energia.
O número máximo de elétrons que cabe em cada subcamada, ou subnivel de energia, também foi determinado experimentalmente:
O número máximo de elétrons que cabe em cada subcamada, ou subnivel de energia, também foi determinado experimentalmente:
energia crescente
---------------------------------->
---------------------------------->
Subnível | s | p | d | f |
Número máximo de elétrons | 2 | 6 | 10 | 14 |
O número de subníveis que constituem cada nível de energia depende do número máximo de elétrons que cabe em cada nível. Assim, como no 1ºnível cabem no máximo 2 elétrons, esse nível apresenta apenas um subnível s, no qual cabem os 2 elétrons. O subnível s do 1º nível de energia é representado por 1s.
Como no 2º nível cabem no máximo 8 elétrons, o 2º nível é constituído de um subnível s, no qual cabem no máximo 2 elétrons, e um subnível p, no qual cabem no máximo 6 elétrons. Desse modo, o 2º nível é formado de dois subníveis, representados por 2s e 2p, e assim por diante.
Como no 2º nível cabem no máximo 8 elétrons, o 2º nível é constituído de um subnível s, no qual cabem no máximo 2 elétrons, e um subnível p, no qual cabem no máximo 6 elétrons. Desse modo, o 2º nível é formado de dois subníveis, representados por 2s e 2p, e assim por diante.
Resumindo:
Nível | Camada | Nº máximo de elétrons | Subníveis conhecidos |
1º | K | 2 | 1s |
2º | L | 8 | 2s e 2p |
3º | M | 18 | 3s, 3p e 3d |
4º | N | 32 | 4s, 4p, 4d e 4f |
5º | O | 32 | 5s, 5p, 5d e 5f |
6º | P | 18 | 6s, 6p e 6d |
7º | Q | 2 (alguns autores admitem até 8) | 7s 7p |
Linus Carl Pauling (1901-1994), químico americano, elaborou um dispositivo prático que permite colocar todos os subníveis de energia conhecidos em ordem crescente de energia. É o processo das diagonais, denominado diagrama de Pauling, representado a seguir. A ordem crescente de energia dos subníveis é a ordem na sequência das diagonais.

Acompanhe os exemplos de distribuição eletrônica:
1 - Distribuir os elétrons do átomo normal de manganês (Z=25) em ordem de camada.
Solução:
Se Z=25 isto significa que no átomo normal de manganês há 25 elétrons. Aplicando o diagrama de Pauling, teremos:
K - 1s2
L - 2s2 2p6
M - 3s2 3p6 3d5
N - 4s2 4p 4d 4f
O - 5s 5p 5d 5f
P - 6s 6p 6d
Q - 7s 7p
Resposta: K=2; L=8; M=13; N=2
2 - Distribuir os elétrons do átomo normal de xenônio (Z=54) em ordem de camada.
Solução:
K - 1s2
L - 2s2 2p6
M- 3s2 3p6 3d10
N- 4s2 4p6 4d10 4f
O- 5s2 5p6 5d 5f
P- 6s 6p 6d
Q- 7s 7p
Resposta: K=2; L=8; M=18; N=18; O=8
Há alguns elementos químicos cuja distribuição eletrônica não “bate” com o diagrama de Pauling.
NÚMEROS QUÂNTICOS :
Os números quânticos descrevem as energia dos elétrons nos átomos e são de enorme relevância quando se trata de descrever a posição dos elétrons nos átomos.Número quântico principal, n
O número quântico principal pode tomar como valor qualquer número inteiro positivo. Como o próprio nome o sugere, este número quântico é o mais importante, pois o seu valor define a massa do átomo de potássio ( e de outro átomo monoelectrónico de carga nuclear Z) por meio da equação:

onde m e e são a massa dos nêutrons e a carga do elétron 0 é a permissividade do vácuo, e h é a constante de planck . Esta equação foi obtida como resultado da equação de schenaider e é desigual a uma das equações obtidas por Bohr, utilizando os seus postulados correctos.
Número quântico de momento angular, l
O número quântico de momento angular, ou azimutal, informa-nos sobre a forma das órbitas. Como o próprio nome indica, o valor de l define o momento angular do elétron, sendo que o aumento do seu valor implica o aumento correspondente do valor do momento angular. Deste modo, a energia cinética do elétron é associada ao movimento angular e esta dependente da energia total do elétron, pelo que é natural que os valores permitidos de l estejam associados ao número quântico principal. Para um dado valor de n, l pode ter como valores possíveis os números inteiros de 0 a (n − 1).
Número quântico magnético, ml
O número quântico magnético especifica a orientação permitida para uma nuvem eletrônica no espaço, sendo que o número de orientações permitidas está diretamente relacionado à forma da nuvem (designada pelo valor de l). Dessa forma, este número quântico pode assumir valores inteiros de -l, passando por zero, até +l.
- l = 0 : corresponde ao subnível s, onde existe somente uma orientação (ml = 0).
- l = 1 : corresponde ao subnível p, onde existem três orientações permitidas, que surgem em decorrência dos três valores de ml (+1, 0, -1). Os três orbitais p são denominados px, py e pz e são orientados de acordo com os três eixos cartesianoss (x, y e z).
- l = 2 : corresponde ao subnível d onde existem cinco orientações permitidas, ou seja, cinco valores de ml (-2, -1, 0, +1, +2). São designados por dz² (orientação coincidente com o eixo z), dx²-y² (orientação coincidente com os eixos x e y, simultaneamente), dxy(orientado entre os eixos x e y), dyz (orientado entre os eixos y e z) e dxz (orientado entre os eixos x e z).
Número quântico de spin, ms
O número quântico de spin indica a orientação do elétron ao redor do seu próprio eixo. Como existem apenas dois sentidos possíveis, este número quântico assume apenas os valores -1/2 e +1/2, indicando a probabilidade do 50% do elétron estar girando em um sentido ou no outro
A tabela a seguir resume os significados de cada número quântico e os valores que eles podem assumir
nome | símbolo | significado do orbital | faixa de valores |
---|---|---|---|
número quântico principal | ![]() | camada | ![]() |
número quântico azimutal | ![]() | subnível | ![]() |
número quântico magnético | ![]() | deslocamento de energia | ![]() |
número quântico de spin | ![]() | spin | ![]() |
A tabela a seguir mostra a relação entre os números quânticos e os orbitais.
n | l | Orbital | ml | ms | Número de Combinações |
---|---|---|---|---|---|
1 | 0 | 1s | 0 | +1/2, -1/2 | 2 |
2 | 0 | 2s | 0 | +1/2, -1/2 | 2 |
2 | 1 | 2p | +1, 0, -1 | +1/2, -1/2 | 6 |
3 | 0 | 3s | 0 | +1/2, -1/2 | 2 |
3 | 1 | 3p | +1, 0, -1 | +1/2, -1/2 | 6 |
3 | 2 | 3d | +2, +1, 0, -1, -2 | +1/2, -1/2 | 10 |
4 | 0 | 4s | 0 | +1/2, -1/2 | 2 |
4 | 1 | 4p | +1, 0, -1 | +1/2, -1/2 | 6 |
4 | 2 | 4d | +2, +1, 0, -1, -2 | +1/2, -1/2 | 10 |
4 | 3 | 4f | +3, +2, +1, 0, -1, -2, -3 | +1/2, -1/2 | 14 |
Sendo o 3p menos energético que o 4s, o 3p No diagrama de Linus Pauling vem depois do 4s.